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The inverse problem of the theory of opposing-jet collision with a central body 
(deflector) is considered; this problem has engineering applications. Simple re- 
lations describing the form of the deflector and the diffuser--confuser attachment 
are obtained. 

In considering internal problems of hydroaerodynamics [i, 2], the difficulties which 
arise are intensified on attempting a rigorous study of flow with induced stratification of 
the velocity field. At the same time, such problems may be successfully overcome in external 
problems [3-5]. In practice, for example, a certain number of models of jet hydroaerodynamics 
have been successfully introduced [3]. 

The applicability of one such model to a new class of problems of the internal collision 
of jets and flow rotation is shown below; these problems are important in engineering applica- 
tions. 

The model of the collision of gas flows at subsonic velocities is based on the descrip- 
tion of the potential core of the flow of two colliding jets. In the axisymmetric case, 
in order to determine the basic kinematic characteristics, it is sufficient to consider the 
plane problem of collision in steady conditions. A significant deficiency of this simpli- 
fication is the inadequacy of the real problem in the collision zone [3]. Chalpygin's 
classical idea allows the traditional scheme with a point of stagnancy (Fig. la) to be re- 
placed by the concept of a central stagnant zone (Fig. Ib), at the boundary of which the gas 
velocity has some relatively small value v c. 

The characteristics of the stagnant zone and the whole flow are determined on specifying 
the pressure, which may be larger than the pressure in the incoming flow, i.e., if v c is 
the minimum flow velocity [i]. 

In real flows with frontal collision of jets in the central zone (the zone of strong 
deceleration and rotation of the jets) there arises a region of dissipative effects. It is 
convenient to use the idea of a "stagnant zone" for the kinematic demarcation of this region 
and the potential core of the flow. However, the dissipative region, generally speaking, 
is unstable and serves as a source of turbulent inhomogeneities for the adjacent regions of 
turbulent flow. 

The required stability of the potential core may be attained if there is a configurational 
ly equivalent solid body at the site of the stagnant zone. The kinematic similarity of the 
problems of jet flow around such a body and the stagnant zone is obvious. From a dynamics 
perspective, it is appropriate to speak of flow around a central body (deflector) with a 
thin boundary layer, at the external boundary of which velocity v c is reached. 

It is of fundamental importance, however, that in problems of flow around a stagnant 
zone (i.e., deflector), the configuration of the stagnant zone itself is not assumed to be 
specified, but is determined in the course of solving the problem, as a function of the 
velocity v c and other kinematic properties of the flow. 

Thus, in the present case, it is necessary to solve an inverse flow problem: to calcu- 
late the form of the deflector around which jet flow is consistent with potential conditions 
of the flow as a whole. The formal solution of the following problem is known: coaxially 
symmetric collision of two identical jets issuing from two identical channels (of width 2H) 
in opposite directions and flowing into two other identical channels (of width 2d) which are 
perpendicular to the first (Fig. 2) [6]. 
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Fig. 1 Fig. 2 

Fig. i. Motion of two colliding jets with a point of stagnancy (a) and a stag- 
nant zone (b). 

Fig. 2. Motion of two colliding jets in the presence of a deflector at the site 
of the stagnant zone: AB, DE, rectilinear sections of horizontal and vertical 
channels, respectively; BD, free streamline of jet; a, b, characteristic dimen- 
sions~of free jet boundary; v2, P2, velocity and density of medium in colliding 
jets; vl, 01, velocity and density in vertical channel; Vc, gas velocity at 
boundary of stagnant zone FG (minimal flow velocity); H, d, halfwidths of hori- 
zontal and vertical channels; ~ = BK, distance from inlet cross section of hori- 
zontal channel to vertical axis of symmetry; Vo, gas velocity at free streamline 
(maximum flow velocity); 0o, density of retarded flow. 

In solving the problem, the following velocity relatiofis are assumed: vo > vl > v2 > 
v c. The solution in [6] was obtained in the modified hodograph plane (~, 0), where 0 
is the angle of the velocity in the physical flow plane with a positive direction of the 
x axis, and d is a variable of generalized-velocity type for the given problem 

1 

= j" (P/Po) dv=/vL (1) 
2 V~lv 0 

i.e., o = 0 for a free surface, for example. For the characteristic flow velocities, the 
following sequence of values of a is obtained: 0 < oi < o2 < Oc- 

In [6], parametric representations of the basic geometric elements of the flow were 
given: 

i) equation of the stagnant-zone boundary FG 

x = - -  (H/n)  p2vU(pov~) ~ { 1/[n~2,~ ((~)]} N2~Iz,~ (0), 
n = l  

(2)  

y = - -  (H/n)  P@2/(pou,) { 1/[n~v~ ((~)] } N ~ H 2 n  (0); 
rt=l 

2) equation of free boundary 

(3) 

x = - -  d--  (H/~) ,o=v;(poVo) ~ n-~{[Z== (,~c)/r (,~)] N=,, - -  :~a~,~} &,~ (o), 
/ ' t : l  

(4) 

v - H [I - -  (I /~) O=vU(OoVo) {IZ== ((~)/~=.. (,~)] m~,~ - -  M=~,} m2,, (0)1, (5) 
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l\n--1 Z" I(~ M ~  = Z~(%)  + (--~j 2n~ ~J, 

N2n --  ~2n (%) ~- (--" 1) n - I  ~2n (o',), 

I,~ (0) = [cos(v + 1) O]/(v -~- 1) -k [ c o s ( v - -  1) O]/(v - -  1), 

H i  (0) = [sin (v -k 1 ) O]/(v -k 1) - -  [sin (v - -  1) O]/(v - -  1). 

(6) 

(7) 

(8) 

(9) 

Here Z~(o) and ~(o) are linearly independent solutions of the ordinary second-order linear 
differential equation arising in separating variables of the Chaplygin equation in the plane 
(% 0); ~2 is the separation parameter. In this form, in which the angle e is the parametric 
variable (for the left-hand square in Fig. 2, the region of variation of this variable is 
0<~- e~<~/2), the dependence on external kinematic parameters takes on a special role. The 
following five parameters are taken as the unknowns: a, b, d, vl, and v c. From the conditions 
of the problem and the given form of the free surface, four relations are valid for these 
parameters 

~z = Hp2v2/(pivl),  ( 1 0 )  

l = a + d, ( 1 1 )  

a = (4H/~)  p2v2/(poVo) ~A~ (4n~ - -  1 ) - '  {[Z~,~ (,s~)/~,~ (o%)1 N2,~ - -  M~,~}, (12) 

b = ( 4 H / n )  9~v2/(poVo) ~ (-- 1) n - '  (4n 2 - -  1) - I  { [Z2,  (~s~)/~2,~ (%)] N2,~ - -  M~,~}. 
n = l  

(13) 

Thus, the solution from [6] is parametrically undetermined. In itself, this is because 
"already-formed steady motion is considered, taking no account of the initial conditions which 
lead to the given steady motion" [7]. The information may sometimes be made definite by 
symmetrization of the flow or degeneracy of its geometric characteristics (for example, 
degeneration of the "stagnant zone" to a stagnant point), i.e., essentially by some pre- 
liminary treatment of the flow. However, in the general case which is of interest here, 
these methods are impermissible, and the formal solution in [6] does not allow the deflector 
to be uniquely determined. 

The following approximate scheme is physically sound and leads to a unique result. The 
above equations for the boundary of the stagnant zone and the free surface are expanded in 
generalized Fourier series in view of the trigonometric character of the functions I~, H*. 
Retaining only the first terms of these expansions, the contribution of the first (and b~sic, 
according to perturbation-theory conventions) eigenfunction of the Chaplygin equation will 
be correctly taken into account. In the hodograph plane, homogeneous boundary conditions 
will be rigorously observed on the "zero" sections of theboundary, and some "renormalization" 
of the inhomogeneous conditions is assumed. This leads to the following approximate form of 
the solution: 

i) the equation of the stagnant-zone boundary FG 

x := -- ~ [(cos 30)/3 + cos 0], 

y = -- a [(sin 30)/3 -- sin 0], 
0 ~ 0 ~-~ ~/2; (14) 

2) the equation of the free boundary 

f x : :  -- = -- ~ [(cos 30)/3 -? cos 0], 

l g = H - -  [~ [(sin 30)/3 - -  sin 0], 
0 ~ < 0 ~ a / 2 ;  (15) 

3) parametric relations 
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a --  b = 4~/3, (16)  

a + d  = 1, (i7) 

d : Hg~vd(giv~). (18)  

If this approximation is compared with the first terms of the series from [6], then in 
formal terms this means 

= [(HI~) P~v2/(poVe)] N2 /~  (~e), (19)  

: (H/R) P2V2/(pove) {[Z~ (~)/~2 (~e)] N~ - -  M~}. (20)  

If ~ and B are regarded as more general ("renormalized") coefficients including the 
perturbed influence of the next terms of the expansions from [6], ~ will be characterized 
only by a dependence on the velocity v , i.e., ~ = a(Vc). At the same time, this dependence 

r d may be considered inversely: the require value of ~ is chosen and the velocity v c is chosen 
as a function of this. In other words, the flow is tuned according to ~, specified in the 
approximate form of the stagnant zone. 

It is readily evident that the same discussion applies in the case of a dependence B = 
~(Vo). The value of B is specified (as becomes clear below, from kinematic considerations), 
and the flow takes a velocity Vo close to the free surface corresponding to the specified 
value of B. With this form of the solution, the parameter~ (the effective deflector dimension) 
may be sufficiently freely used, and the parameter D is determined by the simple relation: 
B = 3(I -- d)/4. It is obvious here that the equation of the free boundary (now regarded as 
a diffuser-confuser attachment) is obtained by a simple affine transformation of the deflector 
equation: first extension and then displacement by a vector corresponding to the output 
cross section of the channel. 

Thus, the geometric elements of the structure controlling the flow have been completely 
determined, as follows. 

i. Using the simple geometric relations 

cos0 + (cos30)/3 = (4/3)cos30, s in0- - ( s in3O) /3  = (4 /3)s i~  0 

Eq. (14), describing the form of the deflector, may be reduced to the form 

(21) 

X2/3 + y2/3 = (4~/3)2/3, (22)  

i . e . ,  t h e  e q u a t i o n  o f  a c l a s s i c a l  c u r v e  o f  h y p o c y c l o i d a l  t y p e ,  a n  a s t r o i d .  T h u s ,  t h e  d e -  
f l e c t o r  takes the form of an astroid, all the geometric properties of which are well known 
[8]. Examples of the appearance of astroids as the forms of wavefront caustics that are 
well known in acoustics and optics may be noted in this connection. Astroids represent the 
first and schematically simplest rearrangement of a wavefront, which may be compared with 
the rearrangement of flow due to the boundaries. 

2. Analogously, the curvilinear sections of the diffuser--confuser attachment in Eq. 
(15) are formed by appropriately shifted arcs of astroids 

x2/3 § y2/3 = (4~/3)2/a. 

3. The parametric relations are 

(23) 

: Hp2v2/(p~v~), ~ = 3 ( l - - d ) / 4 .  (24) 

Thus, the basic approximate relations between the geometric dimensions of the deflector 
and the diffuser have been obtained. Note, in conclusion, that the possibility of flow 
stabilization by means of deflector surfaces has been confirmed experimentally [9]. 

LITERATURE CITED 

i. L. I. Sedov, Plane Problems of Hydrodynamics and Aerodynamics [in Russian], Nauka, Moscow 
(1966). 

659 



2. Modern Hydrodynamics. Successes and Problems [Russian translation], Mir, Moscow (1984). 
3. M. I. Gurevich, Theory of Jets of Ideal Liquid [in Russian], Nauka, Moscow (1979). 
4. G. N. Abramovich, Theory of Turbulent Jets [in Russian], Fizmatgiz, Moscow (1960). 
5. G. Birkhoff and E. H. Zarantonello, Jets, Wakes, and Cavities, Academic Press (1957). 
6. E. D. Tomilov, Subsonic Plane Gas Jet Flows [in Russian], Nauka, Novosibirsk (1980). 
7. L. M. Milne-Thomson, Theoretical Aerodynamics, Dover (1973). 
8. A.A. Savelov, Plane Curves [in Russian], Nauka, Moscow (1960). 
9. P. Chang, Control of Flow Separation, McGraw-Hill, New York (1976). 

HEAT AND MASS TRANSPORT IN PETROLEUM-BEARING EARTHS 

D. P. Volkov, G. N. Dul'nev, 
B. L. Muratova, and A. B. Utkin 

UDC 536.2.08:553.061.31 

A model for the structure of oil-bearing earth is offered together with a method 
for calculating its thermal conductivity with Consideration of diffusion transport. 
Calculation resutls are presented as is an experimental determination of effective 
thermal conductivity of model materials and specimens of oil-bearing earths. 

A major factor in increasing petroleum output is played by increasing the extractable 
fraction of geological reserves in oil fields. At the present time extraction methods in- 
volving thermal action on the oil stratum are being developed and put into use: heating of 
crack zones adjoining drillings by vapor, electrical heaters, and chemical reaction heat; 
forcing heating agents into the stratum -- hot water, water vapor, hot gases; and creation 
of a moving combustion hearth within the stratum. 

Study of the nonsteady-state temperature field permits determination of the size of the 
heated zone and the thermal utilization coefficient -- the ratio of the heat accumulated in 
the stratum to that introduced into the stratum -- and selection of a heatagent flowrate to 
produce desired heating conditions. 

To calculate temperature fields within the plate, a knowledge of the thermophysical 
characteristics of oil-bearing soils is necessary. In the majority of cases measurements 
have been performed for concrete drillholes and locations, which allows use of such data 
under other conditions only with serious reservations. Oil-bearing earths are within the 
class of capillary porous bodies, the poresof which may contain liquid. Heat transport 
through moist bodies is normally accompanied by molecular transport of vapor and liquid, 
produced by the temperature gradient. Therefore, the majority of studies have used not true, 
but effective thermophysical properties, in particular, an effective thermal conductivity. 
The latter depends on many parameters, including the temperature gradient, pressure, relative 
direction of the gravitational force and thermal flux vectors, so that it is not as much a 
physical characteristic of the soil as a regime parameter. 

Approximately 85% of oil-bearing locations contain petroleum in sedimentary deposits 
in the form of sands and sandstones, which consist of grains of quartz, feldspar, and mica, 
bound together primarily by a carbonate and clay cement. Figure i shows a schematic diagram 
of an oil-bearing soil. The grains and cement form a solid skeleton in the pores of which 
liquid and vapor are located. Depending on the volume of liquid within the material, the 
liquid either completely fills the pores (A), or a portion of the pores, spreading over the 
internal surface of the pore in the general case (B), while a portion of the pores remain 
dry (C). If we denote the total pore volume within the material by Vp, the dry pore volume 
by Vd, the liquid volume by VZ, and the gas volume in the pores the walls of which are wet 
by liquid by V m (volume of moist pores), then 

Vp = v d + vs v m. (1) 
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